
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2024

 1 Instructor: Daniel Llamocca

Laboratory 6
(Due date: Nov. 5th)

OBJECTIVES
▪ Compile and execute C++ code using the TBB library in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.

▪ Execute applications using TBB: parallel_for and parallel_reduce (reducing group of arrays into an array)

▪ Implement image histogram with TBB.

REFERENCE MATERIAL

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 6 for associated

examples.

ACTIVITIES
* You can alternatively complete these activities using a Linux laptop.

FIRST ACTIVITY: IMAGE HISTOGRAM COMPUTATION (100/100)

▪ Given a grayscale image 𝐼 of nrows by ncols, we want to get the histogram of 𝐼, represented by the vector ℎ⃗ (of size nb)

✓ We use nb=256 bins in this exercise. Fig. 1 depicts an example.

▪ Serial approach: n = nrowsncols.

✓ Image 𝐼: represented as a n-element vector (image stored in a raster scan fashion).

Naïve serial approach Optimized serial implementation
for i = 0:255

 for j = 0:n-1

 if i = I[j]

 h[i] h[i]+1

 end

 end

end

for j = 0:n-1

 h[I[j]] h[I[j]]+1

end

✓ It is very clear that the optimized serial implementation should be used.

Figure 1. (a) Grayscale image of 1600x1200. (b) Histogram with 256 bins.

n
ro

w
s

=
16

00

ncols = 1200

(a) (b)

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2024

 2 Instructor: Daniel Llamocca

▪ Parallel approach:
✓ It seems that we can attempt to use the optimized serial implementation in parallel, so that h[I[j]] can be updated by

multiple threads. Here, parallel_for can be used with the iteration space [0,n-1]. Example:

parallel_for(blocked_range<int>(0,n), [&] blocked_range<int> r) {

 for (int j = r.begin(); j!= r.end(); ++j)

 h[I[j]] = h[I[j]]+1;

}

 However, there is a possibility that two or more threads update h[I[j] at the same time, causing a race condition.

✓ A safe parallel implementation would look like this:

 Divide the array 𝐼 into nt groups (e.g.: nt = 4).

 For each group, generate a histogram, called partial histogram hp[i], i=0:nt-1. Note that hp has nb=256 elements.

 Here, you use parallel_for with iteration space [0,nt-1]

 Once the partial histograms are ready, add up all these vectors onto a vector ℎ⃗ (of size nb=256).

 Here, you use only parallel_reduce to generate the resulting 256-element vector.

INSTRUCTIONS
▪ Write a .cpp program that reads a binary input file (.bif), computes the histogram, and stores the result (256 values) in a

binary output file (.bof).

✓ Your code should be parallelized via TBB parallel_for and parallel_reduce as per the approach illustrated in Fig. 2.

✓ Your program should read in a parameter nt (number of groups in which the input image is being partitioned).

▪ Considerations:

✓ Input matrix: Read from an input binary file (.bif). You can use the provided puppet.bif file that represents the

16001200 input image in Fig. 1(a). Each element is an unsigned 8-bit number (or uint8).

 Some MATLAB/Octave versions may have a slightly different implementation of rgb2gray function. It is strongly
suggested that you generate your own puppet.bif file with the provided MATLAB script (choose option ‘1’). Or you

can use the provided puppet.bif file, but MATLAB must compute the histogram based off that .bif file.

 You can use the function read_binfile from Laboratory 3 to read data the image data (stored as a 1D array in a

raster-scan fashion) (use typ=0 since each element is of type uint8).

 You can also use the read image function available in Tutorial #2 (for image convolution).

✓ Output histogram: Elements are of type int (32-bit signed integer), also referred as int32.

 To store the int output array in a .bof file, you can use write image code available in Tutorial #2.

▪ Output array verification: You need to verify the generated .bof file. You can do this via the lab6.m script.

✓ Once you place the .bof file (puppet.bof) in the same folder as the script, run the script. The script will display the

input image.
✓ When prompted to select an option, choose option ‘2’. This will compute the histogram and display it.
✓ Then, when prompted to select an option, choose option ‘3’. Here, the MATLAB® script will read the puppet.bof file,

plot the histogram generated by your C++ code (save this file as a .jpeg), and display the sum of differences between
the MATLAB and C++-generated histograms. The result should be 0.

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I (use an average of 10 executions in

order to get the computation time for each case).
✓ Example: ./lab6 4

 It will compute the application using nt = 4.

hp[3]

I

...
nb=256

hp[0] ...hp[1] ...hp[2] ...
nb=256 nb=256 nb=256

n

h
...

nb=256

Reduction

Map

n/nt

Figure 2. Safe parallel implementation of histogram computation. nt = 4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4772/5772: High-Performance Embedded Programming Fall 2024

 3 Instructor: Daniel Llamocca

▪ Take a screenshot of the software running in the Terminal for nt=4. It should show the output histogram values (try to print

out as many as you can on the screen) and the processing time.
✓ Your code should measure the computation time (only the actual computation portion) in us.

▪ Provided files: lab6.m, puppet.jpg, puppet.bif.

TABLE I. COMPUTATION TIME (US) – PARALLEL IMPLEMENTATION WITH TBB PARALLEL_FOR AND PARALLEL_REDUCE

nt Computation Time (us)

4

10

20

50

100

SUBMISSION
▪ Demonstration: In this Lab 6, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Zoom) with the instructor and demo it.

▪ Submit to Moodle (an assignment will be created):

✓ One .zip file:
 1st Activity: The .zip file must contain the source files (.cpp, .h, Makefile), the output binary file (.bof), the

requested screenshot, and the plotted histogram (values generated by your C++ code) as a .jpeg file.
✓ The lab sheet (a PDF file) with the completed Table I.

TA signature: __________________________________ Date: ______________________________

	Objectives
	Reference Material
	Activities
	First Activity: Image Histogram Computation (100/100)

	Submission

